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Abstract: When (laser) beams propagate through atmospheric turbulence in the scintilla-
tion regime the beam exhibits anomalous spreading and gradually becomes incoherent due
to scattering and eventually forms a speckle pattern. We characterize here the scintillation
scaling regime for beams and describe the beam transformation via a moment theory. ©
2019 The Author(s)
OCIS codes: 010.1330 , 010.3310.

1. Introduction

In the context of imaging and communication through the turbulent atmosphere the system performance is affected
by scattering. The evaluation and design of systems with turbulence compensation schemes require a quantitative
description of the effects of the scattering process [7]. When the source is coherent and time-harmonic we describe
here the theory that gives the important statistics of the beam in the regime in which it gradually starts to scintillate.
We refer to [1] and the references therein for background on beam propagation in turbulence.

2. The Beam Scintillation Regime

We consider a primary scaling regime which is characterized by the scaling relations: λ0� l0� L, where λ0 is
the wavelength, l0 is the inner scale of the turbulence (below which energy is dissipated) and L is the range or
beam propagation distance. This leads to the Itô-Schrödinger equation that describes the evolution of the beam in
terms of an initial value problem. This equation was analyzed mathematically in [2] while it was derived from the
Helmholtz equation in [3]. Two primary effects of the turbulence can be differentiated, first beam wander (spot
dancing) and second beam scintillation [4]. The relative standard deviation of the fluctuations of the intensity
approaches one because of the second effect. This occurs for a relatively wide beam so that r0� L0 where r0 is
the beam waist and L0 is the outer scale of the turbulence (size of largest eddies in the turbulence cascade). The
scaling assumptions are made precise in [4, 5].

3. Modified von Kármán Turbulence

We use a common model for atmospheric turbulence, the modified von Kármán model [1, 6] where the spectrum
(Fourier transform of the covariance function C) of the fluctuations in the index of refraction is modeled by
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Here,~κ is the spatial wave vector, l0 = 2π/κm, L0 = 2π/κ0, and A(α) chosen so that C̃2
n describes the “strength”

of the turbulence (its structure function at unit lag). The parameter α is the spectral exponent of the turbulence
which governs the power law decay of the spectrum and with classic Kolmogorov turbulence corresponding to α =
11/3. Here, we consider the more general case with α ∈ (3,4) corresponding to relative rough index fluctuations
motivated by observations that the spectral exponent may indeed vary [8].

4. The Transmitted Intensity Covariance Function

We consider the covariance function of the intensity at range L and as function of two cross-ranges. We let Rx
describe the support of this function in central cross-range (that is the intensity spreading scale) and ρy its support
in the cross-range offset (that is the intensity decorrelation scale). We then have the following fractional scaling
behavior of these parameters when also l0� λ0L/r0� L0 based on the general theory in [5]:

Rx ∝

(
Lα−1C̃2

n

λ
4−α

0

) 1
α−2

, ρy ∝

(
λ 2

0

LC̃2
n

) 1
α−2

.

Observe that both of these scales exhibit a fractional dependence on range and wavelength. Indeed relatively strong
and rough turbulence gives a relatively strong spreading and rapid decorrelation, and thus also a relatively rough
speckle pattern.



5. The Scintillation Index

A fundamental parameter used to describe the effect of the turbulence is the scintillation index I or relative variance
of the intensity along the main propagation axis at range L [1]. We find with l0 = 0:
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for Kα/2−1 the modified Bessel function of the second kind and of order α/2− 1. Here, the scattering mean
free path is Zsca=λ 2

0 /(C̃
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0 ) and characterizes the range scale at which the coherent wave decays, while the
diffraction length is Zc=r0L0/λ0, and characterizes the range scale at which diffraction effects become important.
Then we find that the scintillation index approaches unity for large range. However, in the case of rough turbulence
and small diffraction length the scintillation index may be significantly below one even though the range is larger
than the scattering mean free path.
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Fig. 1. Scintillation index as function of scattering mean free path and diffraction length.

6. Conclusions

We have analyzed from first principles propagation of beams in general non-Kolmogorov turbulence in the scin-
tillation regime. We have found a very interesting anomalous scaling of both the spreading and decorrelation for
the beam intensity profile. These scales show a fractional dependence on the range and the wavelength with the
exponents depending on the spectral exponent for the turbulence. We have, moreover, identified how the scintil-
lation index depends on the turbulence and its universal form that depends only on two effective parameters: the
scattering mean free path and the diffraction length. Here we considered homogeneous and isotropic turbulence
in the wide beam regime. More general models for the turbulence as well as the spot-dancing regime with beam
wander will be considered elsewhere.
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